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Abstract- An analytical solution for the determination of the form of the plastic zone in the vicinity
of a circular hole in inhomogeneous stress fields is discussed. Already in 1946 Galin arrived at a
solution to a related problem ofan infinite plate with a circular aperture in stretching and bending.
Around the aperture. the material behaves perfectly plastically, obeying Tresca's yield criterion.
However, in Galin's solution the explicit condition for the general balance of forces in bending has
been omitted. This paper presents a correction to Galin's error by means of a modified analytical
approach. An extension of the problem, by applying Coulomb's yield criterion in the plastic zone
and assuming continuous or discontinuous stress distributions at the elastoplastic interface is
also considered. The results are illustrated by some numerical examples and supplemented by an
experiment.

I. INTRODUCTION

Cylindrical cavities under hydrostatic loading have been the subject of many studies. In the
case of more complex loading, the Finite Element Method for examinations was usually
used. Only a few studies were concerned with the problem of non-hydrostatic loading of
circular cavities with analytic or semi-analytic methods. Non-hydrostatic homogeneous
loading of long cylindrical cavities was considered thoroughly by Detournay and Fairhurst
(1987). The object of this paper is to investigate the non-hydrostatic and additionally
inhomogeneous loading of long cylindrical cavities in an analytical way for Tresca's
material, and in a semi-analytical way for Coulomb's material. Inhomogeneous loading
means that the initial stress (or the far-field stress) in the plate under consideration is
inhomogeneous.

Examinations of the kinematics of the problem were not performed. Since the stress
field and the displacement field in the plastic zone are independent of one another for the
cases analysed, a separate examination of the kinematics would be possible.

The presented statical solution is valid only up to a certain amount of deviation of the
plastic region from a cylindrical shape. The limits are discussed by Detournay and Fairhurst
(1987).

Consider an infinite plate containing a circular hole under stretching and bending.
Assume that a plastic zone completely encloses the hole, obeying Coulomb's yield condition,
which is an extension of Tresca's condition in the plane strain problem examined.

A solution to the described problem for a biaxially stretched plate under Tresca's yield
condition was given by Galin (1946), who found that the elastoplastic interface has an
elliptic shape. A solution to the same problem under Coulomb's yield condition was given
by Detournay (1986). He found that the shape of the interface in this case reminds one of
a compressed ellipse.

Galin (1946) also provided a solution to the problem in the case of inhomogeneous
loading by bending or superimposed bending and biaxial stretching. His solution can be
shown to be incorrect, because the condition for the general balance of forces has been
omitted. It is the object of this paper to correct Galin's error and to extend his solution
to Coulomb's yield condition in the plastic zone and to continuous or discontinuous
circumferential stresses at the elastoplastic interface.

Boundary conditions at the elastoplastic interface consist of equilibrium conditions
and geometrical compatibility conditions between the elastic and the plastic fields. In Galin's
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Fig. I. Problem definition, inhomogeneous loading.

and Detournay's solutions to the problem, continuity of all stresses was required. This
condition is in general not necessary and will be replaced by other conditions in this paper.
Therefore, equilibrium and compatibility conditions will be considered separately.

2. PROBLEM STATEMENT AND SOLUTION FOR TRESCA'S YIELD CONDITION AND
CONTINUOUS STRESS FIELDS

In Section 2 the fundamental equations will be presented and a correction to Galin's
solution with respect to the form of the plastic zone around a circular hole in a bent plate
will be derived.

2.1. Plastic region
Consider a normal stress (J" and shear stress '"'' acting upon the border of a circular

hole with radius R :

(1)

rand cp are polar co-ordinates, and r = R is the surface of the hole. In the case of Tresca's
yield criterion, the maximum shear stress is 'rna. = k. The stress in the plastic zone is axial­
symmetric and has to fulfill the yield condition:

(2)

x, y is a Cartesian co-ordinate system. The equilibrium conditions are valid both in the
elastic zone and in the plastic zone:

(3)

In the problem described above, vanishing body forces are assumed and equilibrium in the
third direction is identically accomplished.

Assuming that the plastic zone completely encloses the circular hole, Fig. 1, Galin
(1946) calculates the stress distribution in the plastic region in terms of a plastic potential
UI:

(4)

Galin has used the solution for the plastic potential U I :
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r k-p
U I = kr'1. In Ii. - -2- r2 with (1rr ~ (1<i/'lJ (5.1)

(5.2)

The complex representation of stresses used (5.2) is necessary for the next section and will
be explained there. The potential function U I is a biharmonic function. According to the
Laplace operator A = (oZP)x2+0Z/oy2), U I satisfies eqn (6);

(6)

2.2. Elastic region
The solution for the plane problem in the theory ofelasticity can be expressed by two

complex functions fP2(Z) and 1/12(:)' describing an elastic biharmonic potential Uzby means
of Kolosov's (1909) and Muskhelishvili's (1953) method. In the problem in question an
infinite elastic region surrounds the plastic regime. At infinity messes (1: and (1;;' are acting.
Beside the equilibrium eqns (3), Hooke's law concerning the linear coupling ofstresses and
strains and conditions ofcompatibility has to be applied to the elastic region. Introducing
the complex variable z = x+iy, with i = J=l. the stress distribution with these conditions
is known to be;

(7)

(8)

where Bt[ 1means the real part of an expression, i is the conjugated complex value of z,
and fP;(z), 1/12(:) and Q>'2(z) respectively are the first and the second derivatives of the
function with respect to z. Tbe functions Q>2{Z) and 1/12(Z) are analytic complex functions of
the complex variabte z in the elastic region, i.e. the real and the imaginary part of them
satisfy the Cauchy-Riemann conditions (Novozhilov, 1961).

Functions fP2(Z) and I/12(Z) have to be determined by the stress conditions at infinity
and by conditions on the elastoplastic interface L (Fig. 1). Let us assume the following
boundary conditions:

(0':+0';;) =4ao+4ialY (9.1)

(0'.~-(1:)+2it~ = 2bo-4ialY (9.2)

~=~;~=~;~=~ooL ~

The constants aD and bo represent the biaxial loading and tll describes the bending of the
plate. Based on the requirement that the stresses and displacements in the elastic area have
to be single-valued, Novozhilov (1961) explains that the functions fP2(Z) and I/12(Z) can be
written as follows, provided that the point z =0 lies inside the closed loop L :

..
Q>2(Z) = fJ'o(r)+aOz+al z; +(F.r+iFY);'1 In z

2

I/12(Z) =: Vto(z)+boz-al ~ + (J<:T+ iFy»)·2 In z.

(10.1)

(10.2)

Functions fPo{z) and l/ro{z) are analytic at infinity and can be written as a Laurent series :
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(1Ll )

(11.2)

where eto and Po are constants with no influence on the stresses, and AI and )'2 are constants
depending on the material's properties. The coefficients etj and Pj of the series /Po(z) and
l/J o(z) are calculated from the boundary conditions at the interface L.

The vector (Fx+iFv) in eqn (10) represents a resulting load applied to the elastoplastic
interface. The fact that this resulting load vanishes whenever the stress p acts on the surface
of the circular hole is of critical importance. This circumstance was omitted in Galin's
solution (1946) for the case where forces are bending the plate and generate an inhomo­
geneous stress field:

(12)

2.3. Elastoplastic interface
If the loading path forced a monotonic increase of the yielded zone and all material

parameters were continuous, all stresses at the elastoplastic interface L would have to be
continuous for reason of equilibrium and continuity of displacements. The validity of such
a solution depends on the form of the yielded zone and the distribution of the stress
characteristics. The solution is statically determined if any point on the interface L can be
connected with the boundary r = R by two stress characteristics lying entirely within the
plastic region (Detournay, 1986).

Galin (1946) expresses the stress continuity conditions by means of the biharmonic
function U3 :

U3 = U2-U.; AAU3 =0

02U3 + 02U3 = 0; 02U3 _ 02U3 -2i 02U3 = 0
ox2 oy2 ox2 oy2 ox oy on L.

(13.1)

(13.2)

2.4. Curvilinear co-ordinates
The mapping function (x+iy) = w«(+i,,) corresponds in its region of regularity to a

transformation of the region from Cartesian co-ordinates x, y to curvilinear isometric
orthogonal co-ordinates (,,, (Novozhilov, 1961) :

z = (x+iy) = w(e) = w«(+i,,).

By a proper choice of w(e) the curve L of the elastoplastic interface has the form

lei = I on L.

(14)

(15)

We introduce a mapping function w(e), which differs from the one in Galin's solution:

(16)

It contains an additional term co. This additional term allows us to find condition (12),
which expresses the integral equilibrium of forces in an explicit way and restricts the
functions /P2(Z) and l/J2(Z) in eqn (10).

Corresponding to the boundary conditions (9) with the assumed symmetry to the y­
axis the real part of Co is a floating parameter which can arbitrarily be set to zero, since the
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problem is not altered by shifting the hole in the direction of the real axis. This is not the
case with the imaginary part ofeo which is not a floating parameter and has to be determined,
since shifting the hole in the direction of the imaginary axis alters the stress field around
the hole by the existing stress gradient expressed in eqns (9.1), (9.2).

g(1g) in eqn (16) is an analytic complex function with Jimg(1/e) = 0, where
,;-x;

(17)

In the curvilinear isometric orthogonal co-ordinate system e = (, + i,,) boundary conditions
(9) and continuity conditions (13) can be expressed by the analytic functions 'P3(e) and
t/J 3(~) with the following abbreviations:

Continuity of the mean stress:

0= iR[o(~\)+ao+ale~+aleo+alel ~J- k;P +klnR-kln lei

iR[~3(~)] = -klnl~l-klnl(l+ ~e + g~~~»)1 for ,el = I

iR[aO+ale~+alco]- k;P + klnR-kln lei-kIn lei for I~I-+ 00.

(19)

Continuity of the deviatoric stress:

(20)

Conditions (19), (20) with lei = I correspond to the continuity conditions (13) and con­
ditions (19), (20) with I~I-+ 00 correspond to the boundary conditions at infinity (9.1),
(9.2).

In conditions (19) and (20) the stress distribution in the yielded zone is expressed in
terms of the functions ~ I (e) and 'II I (~) in the curvilinear co-ordinates ~ :

2.5. Form of the interface
The Laurent series decomposition ofln 11 +eo/ee+g(l!e)/eel with respect to e= 0 can

be calculated along lei = 1:
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(23)

In contrast to Galin's solution, the Laurent series decomposition (23) is taken into account
in eqn (19). This is necessary on account of condition (12), which restricts the functions lfJiz)
and "'2(Z) [eqn (10)] by the disappearance of the logarithmic term In:. The calculation of
4>2(~) using eqn (18) leads to the expression used in the boundary condition (19) at the
elastoplastic interface ,~, = l. Vanishing of the terms of order O(lj() in eqn (19) can be
obtained by a proper choice of the free parameters ~ in eqn (11). This is not the case with
the terms of order O(l/~), which cannot be adjusted by free parameters without violating
the explicit condition for the balance of forces [eqn (12)]. This claim will be explained in
more detail in Section 2.6. Expressions containing terms raised to the power of zero or
first order must be considered separately; two conditions result from eqn (19) for I~I = I :

order zero:
k+p

9l[ao+at Co]- 2 +k In R-k In lei = 0 (24)

(25)

Function 4>l~) results from eqn (19). Through the proper choice of lfJo(z) in eqn (10), all
terms raised to the power of second or higher order disappear in eqn (19) for I;I = l. Thus
for all of eqn (19), 4>3(~) can be written as:

Equation (20) for Ie, .... 00 with expression (26) for the function 4>3 turns into the following:

• I -4>3(~) -; ate C (
i¢l 3(z) +\}I 3(z) = w(~) w'(~) +\}I3(e) = (cC;+CO)~ - ~ke +\}I 3(e)

- (=(ce+CO)at +bo+bJ(c~+co)-ke for I;i .... x. (27)

From this results term \}I3(~)' extended to I~I = 1,

and

c = c.

(28)

(29)

Inserting expressions ~3(e) [eqn (26)] and \}I3(e) [eqn (28)] in eqn (20) for 1~1 = 1, we get
the equations to determine the mapping function w(~) :
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If we choose the boundary conditions to be symmetric to the y-axis as was done in eqn (9),
then the solution to the problem is also symmetric to the y-axis:

(31)

For reasons of symmetry it follows that

Co=-Co; cj=CjU=I,3,5, ...); cj =-CjU=2,4,6, ...) (32)

and from eqn (25) results:

(33)

2.6. Violation in Galin's solution
To prove the claim that Galin's solution must be defective in the case where the plate

is being bent, we assume that the coefficient Co = 0 vanishes, as was done by Galin. From
eqns (5.2) and (7) and the boundary condition that the mean stress (O'xx+ O'yy) is continuous
at the interface lei = I results equation (34):

k;p +k In Iw~e)1 = 9l[qJ;(z)] = 9l[~:~~J. (34)

The Laurent series decomposition of eqn (34) with lei = I results with respect to eqn (10)
in eqn (35):

k;P -k In R+k In !CI+k91[°(;2)J = 9l[0(;2)+aO+atCe+atCl ~

+(Fx+iFy»).tOG)J for lei = l. (35)

Actually, taking into account the equivalence of the coefficients of e- 1 in eqn (35) at the
interface lei = 1, the result is equation (36) :

(36)

From the symmetry conditions (29) and (31) follows:

(37)

From the boundary condition (9) it follows that in the case of bending the plate the
coefficient at #: O. The vanishing of (J:T+iFy) can only be achieved if C = C. as can also be
seen in eqn (33) with Co = O. Since the equivalence of forces requires the vanishing of
(Fx+iFy) and in Galin's solution C #: c., Galin's solution must be defective. If Co is set to
zero (as in Galin's analysis), there are just not enough degrees of freedom to ensure that
an interface can be found such that all the stress components are continuous across it. One
aim of the present paper is to look for this solution, in which simultaneous continuity of
all stresses in the case of bending is achieved. A numerical example is given in Section 2.8.
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2.7. Solution /0 the equations
In contrast to Galin's solution. we have to bear in mind condition (12) for the integral

equilibrium of forces. Therefore we compare the coefficients of all terms raised to the power
of zero and positive order in the Laurent's decomposition of eqn (30). as well as the
coefficients of the terms raised to the power of first negative order. Together with the
conditions (24), (31). (32). (33) and the following system of equations we determine the
mapping function w(~):

eo: coalc-kC; -alcc2 = -c(bo+blco)

el
: alcC; -kc2-aICC3 = -blcc

e2: alcc2-kc3-alcc4 = 0

(38.-1)

(38.0)

(38.1 )

(38.2)

(38.n)

Regarding eqns (32), (33), eqn (38.-1) for e- 1 comes about in the same way. Solution (38)
for the equations e2

, e3
, ••• is already known from Galin's solution (1946) as the solution

of a difference system of equations with only one convergent part:

(39)

with

(40)

With the aid of the remaining four equations eo, eI of (38) and (24), (33), missing parts of
the mapping function w(e) are determined, which differ from that in Galin's solution (1946).

By means of the abbreviations

we get

jJ (cbo-kc)(av+k)
=(av+k)(2a2+k2)+a2k

Co = a:jJ

(41)

(42)

(43)

(44)

(45)

(46)

The form of the elastoplastic interface L can be expressed as a function of the boundary
conditions at infinity and the stress p that acts upon the wall of the circular hole:

1 Av2

L: z = ce+co+cl e+ e(e-v) with lei = 1. (47)
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plastic region without bending
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'V
C(-l)- 2.74573777
C( 0)- - .27963607 i
C( 1)- - .08320086
C( 2) - .28242299 i
C( 3)- .02819579
C( 4)- - .00281506 i
C( 5)- - .00028130
C( 6)- .00002811 i
C( 7) - .00000280
C{ 8)- - .00000027 i
C{ 9)- - .00000003
C(10)- .00000000 i

Fig. 2a, Example A of a plate in bending.
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Fig. 2b. Stress distribution at the elastoplastic interface in Galin's solution and in the solution given
byeqn (47).

2.8. Example A
In the first example we compare Galin's solution for the form of the plastic region with

the form of the plastic region which is determined byeqn (47). Let us assume the following
boundary conditions for Example A :

Starting from this value, we get the form L of the interface :

z . I O.2824i
L: R=2.7457~-O.27961-0.0832e+e(e+O.IOOOi); I~I = 1.

Galin's solution for the interface L is (Savin, 1956):

The difference between the solution found and Galin's solution is shown in Fig. 2a. The
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new calculated interface has been shifted by a certain amount and is slightly deformed in
another wav.

In Fig: 2b the normal stress (Jpp, the shear stress !p;) and the circumferential stress (J'!/3

and (JS~ at the elastoplastic boundary are plotted with the condition that F, + iFv = O.
Coordinate transformations of the stresses from polar coordinates (r. cp) to curvilinear
coordinates (p, 8) are performed. It should be demonstrated that actually the circumferential
stresses in Galin's solution are discontinuous. if the balance of forces is assumed, in contrast
to the correct solution given by eqn (47).

3. EXTENSION TO FRICTIONAL MATERIALS AND DISCONTINUOUS STRESS FIELDS

In Section 3 we will make use of the fundamental equations and methods from Section
2 and explain only modifications of the conditions and the way of solving the problem.

3.1. Plastic region and Coulomb's yield condition
Coulomb's yield condition for a cohesive frictional material is determined by two

material parameters: the internal friction angle ¢ and the cohesion k. Coulomb's condition
is an extension of Tresca's condition (2) :

For the assumed boundary condition (1), the stress distribution in the statically determined
plastic zone is axially symmetric. Salen~on (1966, 1969) gives the following stress dis­
tribution for the two cases (Jrr ~ (J<p<p' if Coulomb's condition (48) is valid:

+2 [ A AJ(r)+2s~n4i
«(J<p<p-(Jrr) = I ±~in ¢ k cos ¢-p sin ¢ R l±sln,p

2 - I ( r) +2sin4i
( <J +(J) = A -- [k cos :i._p sin.I] - I±sin~ +2k cot :i..

<P<P rr I +' ,/, '.I 'I' qJ R 'I'_sm 'I' sm qJ

(49)

(50)

3.2. Equilibrium at the elastoplastic interface
Contrary to Galin's (1946) or Detournay's (1986) methods of solving the problem­

they both demand continuity of all stresses by assuming eqn (13) (respectively for Detour­
nay in an analog manner)-we examine the equilibrium condition at the elastoplastic
interface as a separate important physical condition. Therefore, if we demand that the
resultant force (Fx+iFy ) vanishes, we must claim continuity of normal and shear stresses
along the elastoplastic interface. This must hold even if the circumferential stress at the
elastoplastic interface is not continuous. We calculate the normal and shear stresses along
the elastoplastic interface:

(51)

where <Jpp is the normal stress and !p3 is the shear stress at the elastoplastic interface in the
curvilinear co-ordinates e= pei3 defined byeqn (14). The co-ordinates rand cp are the polar
co-ordinates introduced and IX is the angle between the outward normal of the plastic zone
and the x-axis. Angles cp and IX can be expressed by the mapping function w(~) [eqn (14)],
with I~I = p = I :

e
2i

<p = C:S = :~~~ (52)
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Continuity ofnormal and shear stresses towards the elastoplastic interface can be expressed
in the curvilinear co-ordinates by the equality of corresponding stress components in the
plastic and elastic region. These components are given in the elastic region by the stress
functions CfJ2(e), t/! 2(e), e.g. Novozhilov (1961). The boundary condition on the elastoplastic
interface for surface tractions jj in the co-ordinate direction j of a Cartesian co-ordinate
system can be transformed into the normal and shear stresses (0'pp +i'p3) under consideration
in the direction of the interface:

CfJ2(~)+ w(e) CfJ2(e)+t/!2(e) = IS (-j~+if.~)ds= IS (-h+v;,)ei"ds
w'(e) Jo Jo

= r= (_f3 +v;,)( -i) dz = r; (O'pp +irp3)w'(~) de. (54)Jo JI

The integral on the right-hand side of eqn (54) can be solved with the knowledge of the
stresses in the plastic region given by eqn (49). We use the following abbreviations and
lei = I:

+2 1. A +1
K1=1 . ;;(kcOS<p-pSlOq,); K2=~K\

±~o/ ~o/

f (O'pp+irps)w'(e) de =f [!(-K2P"+K)+HK\P") :~~~ e\ ::i~~ w'(e)de

=!K)w(e)--2
1

• K2 (W(e)W(e»"12W(e)+const.
+cx

(55)

(56)

3.3. Discontinuous circumferential stresses
Although normal and shear stresses at the elastoplastic interface are continuous on

account of the equilibrium conditions, this is not necessarily the case for circumferential
stresses. In fact, the circumferential stresses should be continuous if the plastic region
expands monotonically and all material parameters are continuous. Discontinuous cir­
cumferential stresses (and this is also valid for the circumferential plastic strain not con­
sidered here) arise only in the case of unloading, which will not be discussed in this paper,
and in the case of discontinuous material parameters. In particular, in Coulomb's yield
criterion it is significant to distinguish between the cases concerning the values of the
material parameters ofcohesion k and internal friction angle cP in a yielded zone with plastic
deformations, and without it. In the same way we distinguish between sticking and slipping
friction and between sticking and slipping cohesion. At the elastoplastic interface a small
variation l:!k of the cohesion k and a small variation l:!cP of the internal friction angle cP may
occur, since conditions vary from sticking to slipping by the crossing from the elastic to the
plastic region. In the elastic region at the elastoplastic interface the cohesion is k;"1 = k + l:!k,
the internal friction angle is cP~1 = cP +l:!cP and the circumferential stress is cris = 0'33 +l:!0'33'

The values ofM. l:!t$ or l:!O'ss may be negative. With the aid of Coulomb's yield condition
we express the described circumstance in the following manner:

Plastic side:
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Elastic side:

G. TOKAR

The physical consequence of the discontinuous material parameters assumed is far-reaching
and interesting. It results in the existence of a finite boundary between the elastic and plastic
region, in which energy dissipation takes place. The physics of this boundary can be
examined separately, but this is also not a topic of this paper. It is assumed that this finite
boundary is thin.

Although the circumferential stress (j:J:J and the material parameters k, 4J may be
discontinuous at the elastoplastic interface, the yield function Fin eqn (57) is a continuous
and smooth function which can be differentiated. Neglecting terms of higher order, since
the values !!.k, !!.4J and !!.(j33 are assumed to be small, the linearized relation between the
cohesion, the friction angle and the circumferential stress at the elastoplastic interface is
expressed by the tangent to the contour line of the smooth yield function F:

(58)

If circumferential stresses at the elastoplastic interface are discontinuous, the first invariant
of stresses will be discontinuous. To calculate this, we transform the difference between the
main stresses:

(59)

From this we get with the aid of the equations (49), (50), (52), (53), (58) and the continuity
of (jpp:

= D(w(e»+D(w(e» = 291[f Dj(e)e
j
] (60)

]=0

where D(w(e» is a function of the co-ordinate eand describes the discontinuity of the
circumferential stress !!.(j88. The total circumferential stress in the elastic region consists of
the part generated by continuous stress fields, and the part generated by discontinuous
material parameters, IT:f8 = (j83+ !!.(j83 :

(61)

Detoumay (1986) shows that the expression (wro)d/2 can be expanded in a Laurent series
using the formula of Miller:

(62)

where
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The stresses on the elastic side of the interface satisfy criterion (57b) with k+M and ¢+6.¢
as the "sticking" values. This condition, together with the continuity requirement of the
stress vector across L and the knowledge of the stress in the plastic zone, constitute a
consistent set of conditions to determine L.

To calculate the interface L we need the Laurent series decomposition of eqn (60)
which is more complex. To simplify the problem mathematically, we don't claim the
variations 6.k and 6.¢ to be constant, but rather to be such that 6.U33 = s = const. results
[eqn (58)]. Of course 6.k and 6.¢ are not uniquely determined by this condition. However,
this is not necessary to calculate the stresses in the elastic region, since we know the value
of 6.U33 = s a priori. From this results the simple condition:

(64)

It has to be said clearly that the arbitrary assumption (64) is motivated only by mathematical
reasons and should be replaced as soon as possible by the physically motivated condition
(60). With almost all circular shaped plastic zones, however, the difference between the two
conditions is minor.

3.4. Elastoplastic interface
With functions 'P2(W(e» and r/!2(W(e» from eqn (10), demanding equivalence offorces

[eqn (12)], we get from eqns (54) and (61) the following system of equations. From this
system we calculate the form L of the elastoplastic interface:

2 ((fJo(e) + (fJo(e») = - 2ao- 2a l(w(e)-w(e»
Wi (e) Wi (e)

-K2(w(e)w(e»<iI2+K3+D(e)+D(e) with lei = 1. (66)

The imaginary part ofeqn (66) vanishes. Additionally, the left-hand side ofeqn (66) doesn't
have terms raised to the power of zero and first order as a consequence of eqn (10) and the
mapping function w(e) [eqn (16)]. From the last we get two conditions, that the terms
raised to the power of zero and first order on the right-hand side of eqn (66) must balance
[(70.1) and (70.2)]. To briefly express this we use the following abbreviation for the
decomposition of functions:

(67)

Since all terms raised to the power of zero or positive order in eqn (65) can be balanced by
expression r/! o(e), we get a system ofequations for the coefficients of all terms with negative
exponents. To determine the mapping function w(e) we express the function 'Po(e) by w(~)

from eqn (66) with abbreviation (67) :
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<p~(¢) = -al L FAW(¢) -W(¢)]¢jw'(¢) -1K2W'(¢) L ,sj¢J + ~W'(¢) L Dj(¢)~J.
i=-2 )=-"2 i=-:

(68)

With the two equations from (66) for the terms raised to the power of zero and first order
and the equations for the coefficients of the terms with negative exponents in eqn (65), we
get in respect of expression (68) a nonlinear system of equations for the coefficients of the
mapping function w(¢) [eqn (16)]. With the assumption that w(¢) can be expressed by a
finite Laurent series,

we get the following system:

-2ao-2al(co-co)-K2,sO+K3+Do = 0

-2a\(c\-G)-K2,s1 +D\ = 0

for m = 1,2,3, ... , ct:)

(69)

(70.1 )

(70.2)

(70.3)

The solution of the infinite nonlinear system of equations (70) gives the coefficients of the
mapping function w(~) [eqn (16)]. An approximate solution can be found by expressing
the mapping function in a finite series [eqn (69)], and to minimize the error in a finite
number ofequations ofthe system [eqn (70)]. A mathematical proof that this approximation
method converges towards the sought solution is not known to the author. But we can
assume that the fewer the terms by which the series of the mapping function w(~) is
truncated, the fewer constraints are acting on the form of the calculated elastoplastic
interface. Therefore the approximated solution should converge to the sought one. These
assumptions are confirmed by numerical results in such a way that the coefficients of the
truncated series wee) converge numerically to the analytical solution (47) for Tresca's yield
criterion. An analytical solution of the problem for a material with infinite internal friction
(¢ -+ n12) is given by Cherepanov (1963, 1964), and can also be confirmed numerically as
a limit case of the equations presented in this paper.

4. EXAMPLES

The following examples present only a limited number of various parameter com­
binations. The examples are by no means complete and will only give an idea of the different
forms of plastic regions. The examples presented are valid up to limited deviations of the
plastic zones from a circular shape. The limits are discussed by Detournay (1986). Also, a
minor discontinuity of the circumferential stress is assumed. To demonstrate the influence
of the parameters on the form of the plastic zones clearly, an exaggerated variation of the
parameters without regarding the limits is performed.
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'V
C(-l)- 2.77420128
C( 0)- .14725525 i
C( 1)- - .06168135
C( 2)- - .15020280 i
C( 3)- .02124977
C( 4)- .00300615 i
C( 5)" - .00042509
C( 6)= - .00006011 i
C( 7)- .00000850
C( 8)= .00000117 i

0= O·

Fig. 3. Example B: compression and bending of a plate. with various internal friction angles rfi.

4.1. Example B
Let us assume the following boundary conditions for Example B and examine the

geometry of the elastoplastic interface for different internal friction angles ¢ :

't".~. = 0; a~ = -3k; a~ = -3k-0.2k;, p = 0; a
plastic >- aplastic
rr ~ <PCP •

In this example the plastic region around the circular hole is a result of a pressure (-3k)
at infinity and a bending of the plate (oa':../oy = - 0.2k/R). How significant the influence
of the internal friction angle ¢ on the shape and magnitude of the elastoplastic interface is
can be seen in Fig. 3. By reducing the internal friction angle ¢>, the magnitude of the plastic
zone increases and its shape varies from a circular-like to a triangular-like form.

4.2. Example C
In Example C the internal friction angle is ¢ = 30°. The following boundary conditions

are considered:

... 00 = 0 . aOO = a OO = - 10k p = 0 . aplastic >- aplastic"xy , xx yy , ,rr ~ (pcp •

An overlayed bending of the plate causes a variation of the shape of the plastic zone. Since
unloading of the plastic region is not admissible, the trajectories shown are not achievable
by increasing the bending. They can, however, be reached on separate loading paths
(compare Detournay, 1986), Fig. 4.

4.3. Example D
In Example D similar conditions to Example C are observed, except that stresses at

infinity are different in the x- and y-directions. The shape of the plastic zone reminds one
of a deformed ellipse:

~ = -5.0 i

"V
C(-l)- 1.82661599
C( 0)- .33293137 i
C( 1)- - .12159770
C( 2)- - .40024542 i
C( 3)- .00970307
C( 4)- - .03445540 i
C( 5)- .05529062
C( 6)- .00230480 i
C( 7)- .01251618
C( 8)- .01363114 i

Fig. 4. Example C : compression and bending of a plate, internal friction angle q; = 30°.
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V
C(-1)- 1.96734593
C( 0)- .21978299 i
C( 1)- .28493818
C( 2)= - .20148083 i
C( 3)- - .03317069
C( 4)- .03504852 i
C( 5)- .01919035
C( 6)- - .01047322 i
C( 7)- - .00719672
C( 8)- .00416179 i

G. TOKAR

~ =-2.5 i
- 1.25 i

0.0 i
.v-;.:....--f'-~"'v"

Fig. 5. Example 0: biaxial compression of aplate and overlayed bending, internal friction angle
tP = 30°.

tOO = O' a oo = - 10k' a oo = - 14k p = O' aPlastic >- aplaslicxy 'xx 'yy , ,rr r qup .

An overlayed bending of the plate causes the variation of the shape of the plastic zone
shown. In comparison to Example C, trajectories are not reachable on only one loading
path, since unloading is not admissible; Fig. 5.

4.4. Example E
Example E shows a biaxially pressed plate. The internal friction angle is <{J = 30°.

Boundary conditions are:

t~ = 0; a;;, = -10k; a oo = _ 14k p = O' aplastic >- ".plastic
yy , ,rr ="'" vrpcp .

Discontinuous circumferential stresses at the elastoplastic interface decisively influence the
shape of the plastic region. The circumferential stress in the elastic region at the elastoplastic
interface is higher than the circumferential stress in the plastic region at the interface. The
difference is a constant amount. By increasing this stress difference the plastic region shrinks
(this is not to be understood as an unloading path) and changes its form as shown in Fig.
6.

In the course of examination of the elastoplastic interface around a circular hole,
experiments with rectangular specimens made of cohesive frictional material were carried
out (Tokar, 1987). The material used was Araldidt B, an epoxi resin of the Ciba Company,
Germany, with a special amount (4% by weight) of the hardener PSA (Burgert, 1981;
Kuch, 1988). This material is transparent in the elastic regime. Yielding of the materials in
triaxial tests was examined by Kuch (1988) using cylindrical specimens, showing yielding
according to Coulomb's condition. In the experiments performed (Tokar, 1987), a triaxial
loading was applied to rectangular specimens containing a circular hole. Around the circular
hole a plastic region developed. In Fig. 7 one specimen is shown, containing a plastified
region with a geometrical form similar to the calculated one shown in Fig. 6. Whether

• = 0.0 k

V
C(-1)- 1.96802378
C( 0)- .00000000 i
C( 1)- .30064803
C( 2)- .00000000 i
C( 3)- - .02410439
C( 4)- .00000000 i
C( 5)- .00373244
C( 6)- .00000000 i

Fig. 6. Example E: biaxial compression of a plate, internal friction angle tP = 30° ; discontinuous
circumferential stress at the elastoplastic interface.



Generalization of Galin's problem

Fig. 7. Biaxial compression of a specimen made of cohesive frictional material indicates a plastic
zone enclosing the circular hole.

145
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the stresses at the elastoplastic interface in the experiment were in fact continuous or
discontinuous (as assumed in the calculation) cannot be determined from the tests per­
formed.

5. CONCLUDING REMARKS

The form of the plastic zone around a circular hole in an inhomogeneous stress field
has been discussed. Plane strain conditions and a plastic zone enclosing the hole were
assumed. The inhomogeneous stress field represents a biaxial loading and an overlayed
bending, as illustrated in Fig. 1. Yielding of the material is described by Tresca's and
Coulomb's yield condition. Both continuity and discontinuity of the circumferential stresses
at the elastoplastic boundary were considered.

The main achievements of the paper are the corrected analytical solution of the form
of the plastic zone around a circular hole in an inhomogeneous stress field for Tresca's
material and a quasi-analytic solution for the case with Coulomb's material. The quasi­
analytical solution in the second case is an analytic description of the problem in a nonlinear
infinite system of equations and an approximative numerical solution to the equations.

The significance of the results are the calculation of the failed zone around a long
cylindrical underground cavity in an inhomogeneous stress field, as well as with the possi­
bility ofeither continuous or discontinuous stresses at the elastoplastic interface. The forms
of the calculated plastic zones possess complex shapes, and are illustratd in the examples.
The results are limited to a certain amount of deviation of the geometrical form of the
elastoplastic interface from the circular shape. The limits are discussed by Detournay (1986)
and Detournay and Fairhurst (1987).
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